4.5 Article

Metal-free cultivation of Glomus sp BEG 140 isolated from Mn-contaminated soil reduces tolerance to Mn

Journal

MYCORRHIZA
Volume 13, Issue 3, Pages 151-157

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s00572-002-0211-8

Keywords

arbuscular mycorrhizal fungi; soil contamination; heavy metal tolerance; manganese toxicity

Ask authors/readers for more resources

The ability of arbuscular mycorrhizal (AM) fungi of different origin and cultivation history to tolerate excessive levels of manganese (Mn) was studied using hydroponic sand culture. Maize plants were colonised with two lineages of Glomus sp. BEG 140 from Mn-contaminated soil kept for 2 years in metal-free substrate or in the original soil. For comparison, the plants were also inoculated with Glomus intraradices BEG 75 from uncontaminated soil or were left uncolonised. Manganese stress was simulated by irrigation with nutrient solutions containing Mn at high concentrations (0.1, 0.5 and 1 mM); control plants were supplied with 3.8 muM Mn. Whereas the growth of maize plants was not suppressed by Mn at the concentrations examined, the development of AM fungi was negatively influenced by the higher Mn concentrations, with significant differences between isolates and cultivation lineages. The isolate Glomus sp. from Mn-contaminated soil showed higher tolerance to Mn than G. intraradices from uncontaminated soil. Colonisation by G. intraradices was reduced by almost 90% when irrigated with 1 mM Mn, whereas colonisation by the Glomus sp. lineage kept in contaminated soil still reached high levels (65% of the colonisation level of the control plants). The lineage of Glomus sp. cultured in inert metal-free substrate tolerated excessive Mn levels to a lesser extent than the lineage kept long-term in the original contaminated soil, but withstood Mn at higher concentrations than the G. intraradices from uncontaminated soil.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available