4.5 Article

Long-term measurement of matric suction using thermal conductivity sensors

Journal

CANADIAN GEOTECHNICAL JOURNAL
Volume 40, Issue 3, Pages 587-597

Publisher

CANADIAN SCIENCE PUBLISHING
DOI: 10.1139/T03-012

Keywords

matric suction; thermal conductivity sensor; hysteresis; temperature

Ask authors/readers for more resources

Thermal conductivity (TC) sensors, which provide estimates of matric suction, were used in a field experiment designed to characterize unsaturated water movement through coarse mine waste rock at a mine site in northern Saskatchewan. Two years of monitoring data were used to evaluate long-term TC sensor performance and accuracy. Thermal conductivity sensor output requires corrections of sensor hysteresis and changes in ambient temperature. A correction method for ambient temperature is derived. A comparison of the uncorrected field measurements with the values corrected for both hysteresis and ambient temperature indicates that the magnitude of these corrections can be similar. Corrected TC sensor measurements are compared to measurements of matric suction made using tensiometers. Thermal conductivity sensor response to the initial arrival of a wetting front lagged 1-3 days behind the tensiometer measurements. The TC sensor data tended to overestimate matric suction in the waste rock, when compared to the tensiometer data. Long-term drift in the TC sensors located at depths of 50 cm and below (where the sensors have been continuously exposed to matric suctions less than 20 kPa) has lead to data that are not interpretable using the calibration curves derived prior to sensor emplacement in the waste rock pile.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available