4.4 Article

Applicability of the Zimmerman predose model in the thermoluminescence of predosed and annealed synthetic quartz samples

Journal

RADIATION MEASUREMENTS
Volume 37, Issue 3, Pages 267-274

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1350-4487(03)00042-8

Keywords

thermoluminescence; superlinearity; quartz; annealing; kinetic rate equations

Ask authors/readers for more resources

The 110degreesC thermoluminescence (TL) peak of unfired synthetic quartz is known to exhibit a highly superlinear growth with absorbed dose. In this paper, it is shown that the well-known Zimmerman predose model can explain recent experimental results on the superlinearity of annealed synthetic quartz, as well as experimental results on the superlinearity of heavily predosed samples at room temperature. In the case of the predosed samples, the simulation solves the kinetic rate equations for the various stages in the experimental TL predose process. The results of the simulation explain the behavior of the TL versus dose curves at different predoses, as well as the detailed behavior of the superlinearity coefficient k as a function of the predose amount. In the case of the annealed samples, the simulation solves the kinetic equations for different values of the initial concentration of holes in the recombination center. The results of the simulation explain the behavior of the TL versus dose curves at different annealing temperatures, as well as the detailed behavior of the superlinearity coefficient k in each of the two distinct superlinearity regions. The simulation also produces the correct order of magnitude for the large sensitivity changes of the TL intensity observed in both sets of experiments. (C) 2003 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available