4.7 Article

Localization of shocks in driven diffusive systems without particle number conservation -: art. no. 066117

Journal

PHYSICAL REVIEW E
Volume 67, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.67.066117

Keywords

-

Ask authors/readers for more resources

We study the formation of localized shocks in one-dimensional driven diffusive systems with spatially homogeneous creation and annihilation of particles (Langmuir kinetics). We show how to obtain hydrodynamic equations that describe the density profile in systems with uncorrelated steady state as well as in those exhibiting correlations. As a special example of the latter case, the Katz-Lebowitz-Spohn model is considered. The existence of a localized double density shock is demonstrated in one-dimensional driven diffusive systems. This corresponds to phase separation into regimes of three distinct densities, separated by localized domain walls. Our analytical approach is supported by Monte Carlo simulations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available