4.7 Article Proceedings Paper

Reconstruction of turbidity currents in Amazon Channel

Journal

MARINE AND PETROLEUM GEOLOGY
Volume 20, Issue 6-8, Pages 823-849

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.marpetgeo.2003.03.005

Keywords

paleollow; channel-levee system; sinuous submarine channel; meander morphology; numerical model; density currents; Amazon Fan; Ocean Drilling Program Leg 155

Ask authors/readers for more resources

Quantifying the characteristics of the turbidity currents that are responsible for the erosion, lateral migration and filling of submarine channels maybe useful for predicting the distribution of lithofacies in channel fill and levee reservoirs. This paper uses data from a well-studied submarine channel in Amazon Fan in an attempt to reconstruct the velocity, thickness, concentration, duration, recurrence rates and vertical structure of turbidity currents in this long sinuous channel. Estimates of flow conditions are derived from the morphology of the channels and the characteristics of the deposits within them. In particular, the availability of information on the sediment distribution with respect to the channel topography at the time of deposition allows for insights into the vertical structure of the flow, a key property that has been so far poorly understood. Integration of flow constraints from well and seismic data or from detailed analysis of outcrop with numerical flow models is a critical step toward a complete understanding of the flow and associated deposits. Turbidity currents in sinuous submarine channels, exemplified by Amazon Channel, are found to last for tens of hours and occur on a regular, quasi-annual basis. Model results suggest that these flows had, on average, velocities ranging from 2 to 4 m/s in the canyon/upper fan which decreased to 0.5-1 m/s in the lower fan, travelling in excess of 800 km. The model turbidity currents were subcritical over most of the channel length, indicating a low degree of water entrainment and low rate of deceleration down the channel. The formation of such long, sinuous channels is intrinsically associated with frequent, long-duration, subcritical turbidity currents carrying a silt-dominated sediment load. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available