4.5 Article

Expandable bioresorbable endovascular stent. I. Fabrication and properties

Journal

ANNALS OF BIOMEDICAL ENGINEERING
Volume 31, Issue 6, Pages 667-677

Publisher

SPRINGER
DOI: 10.1114/1.1575756

Keywords

bioresorbable stent; endovascular; poly-L-lactic acid; di(ethylene glycol) vinyl ether; porcine arteriovenous shunt model; platelet adhesion; inflammation

Funding

  1. NHLBI NIH HHS [R01 HL/DE 53225] Funding Source: Medline

Ask authors/readers for more resources

A bioresorbable, expandable poly(L-lactic acid) stent has been designed, based on a linear, continuous coil array principle, by which multiple furled lobes convert to a single lobe upon balloon expansion, without heating. Stent strength and compliance are sufficient to permit deployment by a conventional balloon angioplasty catheter. Several multiple lobe configurations were investigated, with expansion ratios ranging from 1.4 to 1.9 and expanded diameters ranging from 2.3 to 4.7 mm. Compression resistance of the expanded stent is dependent on fiber coil density and fiber ply. A range sufficient for endovascular service was obtained, with less than 4% elastic recoil in six day saline incubation studies. Surface plasma treatment with di(ethylene glycol) vinyl ether significantly reduced platelet adhesion in a 1 h porcine arteriovenous shunt model. Patency was maintained in one week implant studies in the porcine common femoral artery. However, a strong inflammatory response, and significant reduction of the vascular lumen were observed following two weeks implantation. The design principles and fabrication techniques for this bioresorbable stent are sufficiently versatile that a broad range of applications can be addressed. Much work remains to be done, including long-term evaluation of the inflammatory response, and of polymer degradation. The results of this study demonstrate the feasibility of expandable biodegradable stent design and deployment by conventional means. (C) 2003 Biomedical Engineering Society.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available