4.2 Article

Polymeric aspects of protein folding: A brief overview

Journal

PROTEIN AND PEPTIDE LETTERS
Volume 10, Issue 3, Pages 239-245

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/0929866033478988

Keywords

-

Ask authors/readers for more resources

Regardless of the differences in primary amino acid sequences, protein molecules in a number of conformational states behave as polymer homologues, allowing speculations as to the volume interactions being a driving force in formation of equilibrium structures. For instance, both native and molten globules exhibit key features of polymer globules, where the fluctuations of the molecular density are expected to be much less than the molecular density itself. Protein molecules in the compact denatured (pre-molten globule) states possess properties of squeezed coils. In fact, even high concentrations of strong denaturants (e.g., urea and GdmCI) more likely constitute bad solvents for protein chains. Thus, globular proteins are probably never random coils without positional correlations and biological polypeptide chains represent the macromolecular coils below a critical point even under harsh denaturing conditions. Several implications of these findings to protein folding are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available