4.6 Article

Sensorless scalar-controlled induction motor drives with modified flux observer

Journal

IEEE TRANSACTIONS ON ENERGY CONVERSION
Volume 18, Issue 2, Pages 181-186

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TEC.2002.805181

Keywords

flux observer; induction motor; scalar control; sensorless control; slip estimator

Ask authors/readers for more resources

This paper presents a simple sensorless scalar control algorithm to control the speed of an induction motor. First, a modified flux observer was employed to estimate the stator flux with the voltage command and the feedback current. Then, based on the mathematical model of the induction motor, the slip frequency was calculated, and the frequency of the voltage command was compensated. An auto-boost controller was designed to overcome the decrease in voltages of the stator resistance and to maintain constant stator flux amplitude. To improve the pure integration problem, a highpass filter was installed in the stator flux observer. In this filter, the cut-off frequency is proportional to the voltage frequency; therefore, the phase shift and amplitude degradation of the estimated flux can be corrected easily. Finally, to demonstrate the proposed control algorithm, a PC-based experimental system was constructed in a 1-hp induction motor. Experimental results are presented to validate the effectiveness of our design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available