4.5 Article

Divergent evolution of flavonoid 2-oxoglutarate-dependent dioxygenases in parsley

Journal

FEBS LETTERS
Volume 544, Issue 1-3, Pages 93-98

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0014-5793(03)00479-4

Keywords

apiaceae; flavonoid biosynthesis; 2-oxoglutarate-dependent dioxygenase; Petroselinum crispum

Ask authors/readers for more resources

Flavone synthases (FNSs) catalyze the oxidation of flavanones to flavones, i.e. the formation of apigenin from (2S)naringenin. While many plants express a microsomal-type FNS II, the soluble FNS I appears to be confined to a few species of the Apiaceae and was cloned recently from parsley plants. FNS I belongs to the Fe-II/2-oxoglutarate-dependent dioxygenases characterized by short conserved sequence elements for cofactor binding, and its evolutionary context and mode of action are under investigation. Using a homology-based reverse transcription polymerase chain reaction approach, two additional flavonoid-specific dioxygenases were cloned from immature parsley leaflets, which were identified as flavanone 3beta-hydroxylase (FHT) and flavonol synthase (FLS) after expression in yeast cells. Sequence alignments revealed marginal differences among the parsley FNS I and FHT polypeptides of only 6%, while much less identity (about 29%) was observed with the parsley FLS. Analogous to FNS I, FLS oxidizes the flavonoid gamma-pyrone by introducing a C2, C3 double bond, and (2R,3S)-dihydro-kaempferol (cis-dihydrokaempferol) was proposed recently as the most likely intermediate in both FNS I and FLS catalysis. Incubation of either FNS I or FLS with cis-dihydrokaempferol exclusively produced kaempferol and confirmed the assumption that flavonol formation occurs via hydroxylation at C3 followed by dehydratation. However, the lack of apigenin in these incubations ruled out cis-dihydrokaempferol as a free intermediate in FNS I catalysis. Furthermore, neither (+)-trans-dihydrokaempferol nor unnatural (-)-trans-dihydrokaempferol and 2-hydroxynaringenin served as a substrate for FNS I. Overall, the data suggest that FNS I has evolved uniquely in some Apiaceae as a paraphyletic gene from FHT, irrespective of the fact that FNS I and FLS catalyze equivalent desaturation reactions. (C) 2003 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available