4.8 Article

RGS3 mediates a calcium-dependent termination of G protein signaling in sensory neurons

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1231837100

Keywords

-

Funding

  1. NINDS NIH HHS [NS16483, NS21725, R01 NS016483, R01 NS021725] Funding Source: Medline

Ask authors/readers for more resources

G proteins modulate synaptic transmission. Regulators of G protein signaling (RGS) proteins accelerate the intrinsic GTPase activity of Galpha subunits, and thus terminate G protein activation. Whether RGS proteins themselves are under cellular control is not well defined, particularly in native cells. In dorsal root ganglion neurons overexpressing RGS3, we find that G protein signaling is rapidly terminated (or desensitized) by calcium influx through voltage-gated channels. This rapid desensitization is most likely mediated by direct binding of calcium to RGS3, as deletion of an EF-hand domain in RGS3 abolishes both the desensitization (observed physiologically) and a calcium-RGS3 interaction (observed in a gel-shift assay). A naturally occurring variant of RGS3 that lacks the EF hand neither binds calcium nor produces rapid desensitization, giving rise instead to a slower calcium-dependent desensitization that is attenuated by a calmodulin antagonist. Thus, activity-evoked calcium entry in sensory neurons may provide differential control of G protein signaling, depending on the isoform of RGS3 expressed in the cells. In complex neural circuits subjected to abundant synaptic inhibition by G proteins (as occurs in dorsal spinal cord), rapid termination of inhibition by electrical activity by EF hand-containing RGS3 may ensure the faithful transmission of information from the most active sensory inputs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available