4.6 Article

Genetic engineering of a suboptimal islet graft with A20 preserves β cell mass and function

Journal

JOURNAL OF IMMUNOLOGY
Volume 170, Issue 12, Pages 6250-6256

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.170.12.6250

Keywords

-

Categories

Funding

  1. NIDDK NIH HHS [R21DK062601, P01DK53087-05] Funding Source: Medline

Ask authors/readers for more resources

Transplantation of an excessive number of islets of Langerhans (two to four pancreata per recipient) into patients with type I diabetes is required to restore euglycemia. Hypoxia, nutrient deprivation, local inflammation, and the beta cell inflammatory response (up-regulation of NF-kappaB-dependent genes such as inos) result in beta cell destruction in the early post-transplantation period. Genetic engineering of islets with anti-inflammatory and antiapoptotic genes may prevent beta cell loss and primary, nonfunction. We have shown in vitro that A20 inhibits NF-kappaB activation in islets and protects from cytokine- and death receptor-mediated apoptosis. In vivo, protection of newly transplanted islets would reduce the number of islets required for successful transplantation. Transplantation of 500 B6/AF(1) mouse islets into syngeneic, diabetic recipients resulted in a cure rate of 100% within 5 days. Transplantation of 250 islets resulted in a cure rate of only 20%. Transplantation of 250 islets overexpressing A20 resulted in a cure rate of 75% with a mean time to cure of 5.2 days, comparable to that achieved with 500 islets. A20-expressing islets preserve functional beta cell mass and are protected from cell death. These data demonstrate that A20 is an ideal cytoprotective gene therapy candidate for islet transplantation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available