4.8 Article

Construction of giant dendrimers using a tripodal building block

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 125, Issue 24, Pages 7250-7257

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja021147o

Keywords

-

Ask authors/readers for more resources

Giant pentane-soluble organo-silicon dendrimers have been synthesized using a triallylphenol brick according to a new divergent construction that uses a hydrosilylation-nucleophilic substitution sequence up to the ninth generation (G(9)). All the reactions were monitored by H-1, C-13, and Si-29 NMR until G(9), indicating that they were clean at the NMR accuracy until this last generation. MALDI TOF mass spectra were recorded for G(1) to G(4) and show the nature and amounts of defects that are intrinsic to the divergent construction. This technique and SEC (recorded up to G(5)) confirm the monodispersity (1.00 to 1.02) from G(1) to G(5). HRTEM and AFM images recorded for the high generations disclose the expected smooth dendrimer size progression and the globular shape. At G(9), the theoretical number of termini (TNT) is 177 407 branches (abbreviation: G(9)-177 047). It is estimated that more than 10(5) terminal branches are actually present in the G(9) dendrimer, far beyond the De Gennes dense-packing limit (6000 branches), and it is believed that the branch termini turn inside the dendrimer toward the core. This is corroborated by lower reaction rates and yields for the highest generation numbers presumably due to intradendritic reactions. It is probable that the dendritic construction is limited by the density of branches inside the dendrimer, i.e., far beyond the dense-packing limit.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available