4.8 Article

Electron microscopy and 3D reconstructions reveal that human ATM kinase uses an arm-like domain to clamp around double-stranded DNA

Journal

ONCOGENE
Volume 22, Issue 25, Pages 3867-3874

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1206649

Keywords

ATM; electron microscopy reconstruction; DNA repair

Ask authors/readers for more resources

The human tumor suppressor gene ataxia telangiectasia mutated (ATM) encodes a 3056 amino-acid protein kinase that regulates cell cycle checkpoints. ATM is defective in the neurodegenerative and cancer predisposition syndrome ataxia-telangiectasia. ATM protein kinase is activated by DNA damage and responds by phosphorylating downstream effectors involved in cell cycle arrest and DNA repair, such as p53, MDM2, CHEK2, BRCA1 and H2AX. ATM is probably a component of, or in close proximity to, the double-stranded DNA break-sensing machinery. We have observed purified human ATM protein, ATM-DNA and ATM-DNA-avidin bound complexes by single-particle electron microscopy and obtained three-dimensional reconstructions which show that ATM is composed of two main domains comprising a head and an arm. DNA binding to ATM induces a large conformational movement of the arm-like domain. Taken together, these three structures suggest that ATM is capable of interacting with DNA, using its arm to clamp around the double helix.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available