4.6 Article

Tethered lipid Bilayers on ultraflat gold surfaces

Journal

LANGMUIR
Volume 19, Issue 13, Pages 5435-5443

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la0342060

Keywords

-

Ask authors/readers for more resources

Tethered lipid bilayers (tBLMs) were obtained by the fusion of liposomes from diphytanoylphosphatidylcholine (DPhyPC) with self-assembled monolayers (SAMs) of a newly designed archaea analogue thiolipid, 2,3-di-O-phytanyl-sn-glycerol-1-tetraethylene glyCol-D,L-alpha-lipoic acid ester (DPTL) on template stripped gold (TSG) films from silicon wafer as a template. SAMs, as characterized by reflection absorption infrared spectroscopy (RAIRS), show a mixture of different conformations of the tetraethylene segment in air, which appears to rearrange into the fully extended conformation when the SAM is immersed into an aqueous electrolyte solution, as deduced from thickness measurements by surface plasmon resonance spectroscopy (SPR). The fusion of liposomes was followed by SPR, quartz crystal microbalance (QCM), and fluorescence microscopy. Highly resistive tBLMs were obtained, as demonstrated by electrochemical impedance spectroscopy (EIS) results, which are equivalent to those for the BLM. This large resistivity is attributed to the ultraflat surface of TSG, as well as to the distinctive architecture of the newly designed molecule. The roughness of the TSG obtained from mica and silicon wafer as template was determined by AFM and compared to that of a Au(111) surface on mica. The largest roughness features of TSG are shown to be 0.5-1 nm, which is small compared to the vertical dimension of the DPTL molecules. This is regarded to be crucial for the self-assembly process, particularly in the case of amphiphilic molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available