4.5 Article

Using the 630.0-nm nightglow emission as a surrogate for the ionospheric Pedersen conductivity

Journal

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2003JA009894

Keywords

Pedersen conductivity; airglow imaging; 630.0 nm

Ask authors/readers for more resources

[1] We develop a technique to create two-dimensional maps of the field line integrated, F-layer Pedersen conductivity from images of the 630.0-nm emission at midlatitudes. By modeling the 630.0-nm and the height-integrated Pedersen conductivity, we show that the former can be used as a surrogate for the latter to within 0.2 mhos if information on the height of the F-layer is known. A simple thin-shell model is used to convert the height-integrated conductivity to field line integrated conductivity, a more useful parameter in the study of midlatitude ionospheric dynamics. Two nights are studied using this technique, one with a gradient in electron density seen to the south and one with severe depletions. In the latter case, bands of alternating low and high field line integrated Pedersen conductivity are seen to align from the northwest to southeast, just as predicted by Perkins [1973].

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available