4.6 Article Proceedings Paper

Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids?

Journal

Publisher

ROYAL SOC
DOI: 10.1098/rstb.2003.1305

Keywords

genome stability; hybridization; polyploidy; DNA methylation

Categories

Ask authors/readers for more resources

Allopolyploidy, the joining of two parental genomes in a polyploid organism with diploid meiosis, is an important mechanism of reticulate evolution. While many successful long-established allopolyploids are known, those formed recently undergo an instability phase whose basis is now being characterized. We describe observations made with the Arabidopsis system that include phenotypic instability, gene silencing and activation, and methylation changes. We present a model based on the epigenetic destabilization of genomic repeats, which in the parents are heterochromatinized and suppressed. We hypothesize that loss of epigenetic suppression of these sequences, here defined as the heterome, results in genomic instability including silencing of single-copy genes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available