4.6 Article

Thermally stimulated luminescence from vapor-transport-equilibrated LiTaO3 crystals

Journal

JOURNAL OF APPLIED PHYSICS
Volume 94, Issue 1, Pages 301-306

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1580643

Keywords

-

Ask authors/readers for more resources

Thermally stimulated luminescence (TSL), optical absorption, and electron paramagnetic resonance (EPR) have been used to characterize the emission of ultraviolet light from undoped LiTaO3. The crystals in this study were grown from a congruent melt and then subjected to a vapor-transport-equilibration (VTE) treatment. Two overlapping TSL peaks occur at 94 and 98 K, with each showing a 350 nm maximum in its spectral emission. These peaks are observed after a 77 K exposure of the crystals to x rays or lasers (266, 325, or 355 nm). Congruent crystals from the same boule (but not VTE treated) produced no measurable emission in similar experiments. During excitation of the VTE-treated crystals at 77 K, holes are localized on oxygen ions, either self-trapped or with a nearby stabilizer, and electrons are trapped at regular Ta5+ ions and at Fe3+ impurities (present at trace levels), where they form Ta4+ and Fe2+ ions. The hole centers and the Fe3+ ions have characteristic EPR spectra, and a broad optical absorption band peaking near 1600 nm is attributed to the Ta4+ electron center. Upon warming, the trapped hole centers formed during the initial excitation become unstable below 100 K and move to Ta4+ ions, thus causing radiative recombination in the TaO6 units. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available