4.5 Article

The siderophore system is essential for viability of Aspergillus nidulans:: functional analysis of two genes encoding L-ornithine N5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC)

Journal

MOLECULAR MICROBIOLOGY
Volume 49, Issue 2, Pages 359-375

Publisher

WILEY-BLACKWELL
DOI: 10.1046/j.1365-2958.2003.03586.x

Keywords

-

Ask authors/readers for more resources

The filamentous ascomycete A. nidulans produces two major siderophores: it excretes triacetylfusarinine C to capture iron and contains ferricrocin intracellularly. In this study we report the characterization of two siderophore biosynthetic genes, sidA encoding L-ornithine N-5-monooxygenase and sidC encoding a non-ribosomal peptide synthetase respectively. Disruption of sidC eliminated synthesis of ferricrocin and deletion of sidA completely blocked siderophore biosynthesis. Siderophore-deficient strains were unable to grow, unless the growth medium was supplemented with siderophores, suggesting that the siderophore system is the major iron assimilatory system of A. nidulans during both iron depleted an iron-replete conditions. Partial restoration of the growth of siderophore-deficient mutants by high concentrations of Fe2+ (but not Fe3+) indicates the presence of an additional ferrous transport system and the absence of an efficient reductive iron assmilatory system. Uptake studies demonstrated that F bound iron is transferred to cellular ferricrocin whereas ferricrocin is stored after uptake. The siderophore-deficient mutant was able to synthesize ferricrocin from triacetylfusarinine C. Ferricrocin-deficiency caused an increased intracellular lab le iron pool, upregulation of antioxidative enzymes and elevated sensitivity to the redox cycler paraquat. This indicates that the lack of this cellular iron storage compound causes oxidative stress. Moreover, ferricrocin biosynthesis was found to be crucial for efficient conidiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available