4.5 Article

Bruton's tyrosine kinase defect in dendritic cells from X-linked agammaglobulinaemia patients does not influence their differentiation, maturation and antigen-presenting cell function

Journal

CLINICAL AND EXPERIMENTAL IMMUNOLOGY
Volume 133, Issue 1, Pages 115-122

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1365-2249.2003.t01-1-02178.x

Keywords

X-linked agammaglobulinaemia; dendritic cells; maturation; T cell polarization

Categories

Ask authors/readers for more resources

X-linked agammaglobulinaemia (XLA) is a primary immunodeficiency disease characterized by very low levels or even absence of circulating antibodies. The immunological defect is caused by deletions or mutations of Bruton's tyrosine kinase gene (Btk ), whose product is critically involved in the maturation of pre-B lymphocytes into mature B cells. Btk is expressed not only in B lymphocytes but also in cells of the myeloid lineage, including dendritic cells (DC). These cells are professional antigen presenting cells (APC) that play a fundamental role in the induction and regulation of T-cell responses. In this study, we analysed differentiation, maturation, and antigen-presenting function of DC derived from XLA patients (XLA-DC) as compared to DC from age-matched healthy subjects (healthy-DC). We found that XLA-DC normally differentiate from monocyte precursors and mature in response to lipopolysaccharide (LPS) as assessed by de novo expression of CD83, up-regulation of MHC class II, B7.1 and B7.2 molecules as well as interleukin (IL)-12 and IL-10 production. In addition, we demonstrated that LPS stimulated XLA-DC acquire the ability to prime naive T cells and to polarize them toward a Th1 phenotype, as observed in DC from healthy donors stimulated in the same conditions. In conclusion, these data indicate that Btk defect is not involved in DC differentiation and maturation, and that XLA-DC can act as fully competent antigen presenting cells in T cell-mediated immune responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available