4.6 Article

Steady-state assemblages of phytoplankton in four temperate lakes (NE USA)

Journal

HYDROBIOLOGIA
Volume 502, Issue 1-3, Pages 97-109

Publisher

SPRINGER
DOI: 10.1023/B:HYDR.0000004273.40488.00

Keywords

phytoplankton assemblages; steady-states; driving forces; stratified lakes

Ask authors/readers for more resources

For four temperate lakes (Northeast U.S.A.) we identify periods of persistent phytoplankton assemblages and investigate the ecological conditions that correlate to these persistent assemblages. Periods of persistent assemblages, here considered as steady-state phases, were defined according to equilibrium criteria (two or three coexisting species, contributing to 80% of the standing biomass, for at least 2 weeks) defined by Sommer et al. (1993, Hydrobiologia 249: 1-7). For all four lakes, samples were taken weekly during the ice-free season and phytoplankton attributes (biomass, assemblages, diversity, species richness, change rates) and abiotic variables (temperature, I*-as light mean in the mixing zone-z(mix), and nutrients) were analysed. Chodikee (CH), an eutrophic and rapidly flushed lake, did not show any persistent phase. The remaining three lakes showed single steady-state phases that occurred at varying times during the ice-free season. Steady-state phases occurred during early stratification in late spring in the stably stratified oligotrophic Mohonk Lake (MO), in the late summer stratification in the mesoeutrophic Stissing Lake (ST), and during spring mixing in Wononscopomuc Lake (WO). MO showed a 3-week period with dominance of F assemblage (Botryococcus braunii, Willea wilhelmii and Eutetramorus planctonicus), characteristic for clear epilimnia, tolerant to low nutrient and sensitive to high turbidity. For three weeks, ST had a stable assemblage with dominance of Lo (Woronichinia sp.), common assemblage in summer epilimnion of mesotrophic lakes and sensitive to prolonged or deep mixing; and P, assemblage able to live in eutrophic epilimnia with mild light and sensitive to stratification and silica depletion. In contrast, the mesotrophic Wononscopomuc Lake (WO) showed persistent assemblages during a 4-week period of spring circulation, when a dinoflagellate (Lo) was co-dominant with Nitzschia acicularis (C). The latter species is characteristic for mesotrophic lakes, tolerant to low light and sensitive to stratification and silica depletion. Both Lo and P assemblages, among seven others, had before been quoted, in literature, as dominant in maturing stages. We could not find consistent statistical differences between the periods classified as steady-state and non-steady-state. However, the data demonstrated that prolonged period of both mixing and stratification can maintain dominant assemblages. Although, historically sensed as opposite mechanisms, both mixing and stratification, if persistent, were observed maintaining dominant assemblages because both scenarios are characterized by environmental constancy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available