4.8 Article

The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distributions within the Alexandrium tamarense species complex (Dinophyceae)

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 20, Issue 7, Pages 1015-1027

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msg105

Keywords

Alexandrium tamarense; Alexandrium catenella; Alexandrium fundyense species complex; biogeography; dinocysts; dinoflagellates; evolution; harmful algal blooms; molecular clock; phylogeny; toxic algae

Ask authors/readers for more resources

The cosmopolitan dinoflagellate genus Alexandrium, and especially the A. tamarense species complex, contain both toxic and nontoxic strains. An understanding of their evolution and paleogeography is a necessary precursor to unraveling the development and spread of toxic forms. The inclusion of more strains into the existing phylogenetic trees of the Alexandrium tamarense species complex from large subunit rDNA sequences has confirmed that geographic distribution is consistent with the molecular clades but not with the three morphologically defined species that constitute the complex. In addition, a new clade has been discovered, representing Mediterranean nontoxic strains. The dinollagellates fossil record was used to calibrate a molecular clock: key dates used in this calibration are the origins of the Peridiniales (estimated at 190 MYA), Gonyaulacaceae (180 MYA), and Ceratiaceae (145 MYA). Based on the data set analyzed, the origin of the genus Alexandrium was estimated to be around late Cretaceous (77 MYA), with its earliest possible origination in the mid Cretaceous (119 MYA). The A. tamarense species complex potentially diverged around the early Neogene (23 MYA), with a possible first appearance in the late Paleogene (45 MYA). A paleobiogeographic scenario for Alexandrium is based on (1) the calculated possible ages of origination for the genus and its constituent groups; (2) paleogeographic events determined by plate movements, changing ocean configurations and currents, as well as climatic fluctuations; and (3) the present geographic distribution of the various clades of the Alexandrium tamarense species complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available