4.5 Article

Using optimized collision energies and high resolution, high accuracy fragment ion selection to improve glycopeptide detection by precursor ion scanning

Journal

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S1044-0305(03)00263-0

Keywords

-

Ask authors/readers for more resources

Glycosylation is the most widespread protein modification and is known to modulate signal transduction and several biologically important interactions. In order to understand and evaluate the biological role of glycosylation it is important to identify the glycosylated protein and localize the site glycosylation under particular biological conditions. To identify glycosylated peptides from simple mixtures, i.e., in-gel digests from single SIDS PAGE bands we performed high resolution, high accuracy precursor ion scanning using a quadrupole TOF instrument equipped with the Q(2) pulsing function. The high resolving power of the quadrupole TOF instrument results in the selective detection of glycan specific fragment ions minimizing the interference of peptide derived fragment ions with the same nominal mass. Precursor ion scanning has been previously described for these glycan derived ions. However the use of this method has been limited by the low specificity of the method. The analysis using precursor ion scanning can be applied to any peptide mixture from a protein digest without having previous knowledge of the glycosylation of the protein. In addition to the low femtomole (nanomolar) detection limits, this method has the advantage that no prior derivatization or enzymatic treatment of the peptide mixtures is required. (C) 2003 American Society for Mass Spectrometry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available