4.6 Article

Urinary excretion of the uraemic toxin p-cresol in the rat:: contribution of glucuronidation to its metabolization

Journal

NEPHROLOGY DIALYSIS TRANSPLANTATION
Volume 18, Issue 7, Pages 1299-1306

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/ndt/gfg107

Keywords

creatinine; glucuronidation; kinetics; metabolization; p-cresol; rats

Ask authors/readers for more resources

Background. Increasing evidence indicates that lipophilic and/or protein-bound substances such as p-cresol are responsible for adverse physiological alterations in uraemic patients. To better understand the evolution of p-cresol disposition in renal failure and dialysis patients, it is necessary to determine its kinetic characteristics and biotransformation pathways. Methods. We studied the biotransformation of p-cresol after intravenous injection of the compound in eight rats with normal renal function. Urine was collected in four 1 h intervals. To evaluate the presence of p-cresol metabolites, beta-glucuronidase was added to urine samples and the isolated unidentified chromatographic peak observed in previous experiments was submitted to tandem mass spectrometry (MS/MS) analysis. Results. Administration of p-cresol produced a p-cresol peak and an unknown peak, suggesting biotransformation of the compound. Addition of beta-glucuronidase to urine samples and incubation at 37degreesC resulted in a marked decrease in the unidentified peak height (P < 0.001) together with an increase in p-cresol peak height (P < 0.001), suggesting that the unidentified peak was composed, at least in part, of p-cresylglucuronide. Mass spectrometry (MS) and MS/MS analysis of the isolated unidentified peak confirmed the presence of p-cresylglucuronide. Linear regression between the peak height of p-cresylglucuronide before enzyme treatment and the increase in p-cresol peak height after enzyme treatment in samples incubated with beta-glucuronidase allowed us to calculate the amount of p-cresylglucuronide as its p-cresol equivalents. This revealed that 64% of the injected p-cresol was excreted as glucuronide. There was no change in peak heights when sulphatase was added to the urine. When p-cresol and p-cresylglucuronide levels were combined, similar to85% of all administered p-cresol was recovered in the urine. In addition, the combined urinary excretion of p-cresol and p-cresylglucuronide was more than four times greater than excretion of p-cresol by itself (P<0.01). Conclusions. In rats with normal renal function, intravenous administration of p-cresol results in immediate and extensive metabolization of the compound into p-cresylglucuronide. The elimination of p-cresol from the body depends largely on the urinary excretion of this metabolite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available