4.8 Article

Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold

Journal

BIOMATERIALS
Volume 24, Issue 16, Pages 2773-2778

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/S0142-9612(03)00080-2

Keywords

nanocomposite; PLLA; montmorillonite; modulus; biodegradation rate; scaffold

Ask authors/readers for more resources

Inorganic nanosized silicate nanoplatelets were incorporated into biodegradable poly(L-lactic acid) (PLLA) for the purpose of tailoring mechanical stiffness of PLLA porous scaffold systems. Increasing the nucleation density around the foreign body surfaces, the montmorillonite (MMT) nanoplatelets modified with dimethyl dihydrogenated tallow ammonium cations decreased the glass transition temperature and the degree of PLLA crystallinity, which seemingly caused the accelerated biodegradation rate of PLLA nanocomposites due to the enhanced segmental mobility of backbone chains and the expanded amorphous region of PLLA matrix. The tensile modulus was increased from 121.2 MPa of pristine polymer scaffold to 170.1 MPa of MMT/PLLA nanocomposite scaffold (ca. 40% increment) by the addition of small amount of MMT platelets (5.79 vol%) acting as a mechanical reinforcement of polymer chains in the nanoscale molecular level. Overall, the nanotechnology used in this study may be applied to various scaffold systems of biodegradable polymers and hard/soft scaffold structures requiring critical control and design characteristics of mechanical stiffness and biodegradation rate. (C) 2003 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available