4.6 Article

Mast cells in airway hyporesponsive C3H/HeJ mice express a unique isoform of the signaling protein Ras guanine nucleotide releasing protein 4 that is unresponsive to diacylglycerol and phorbol esters

Journal

JOURNAL OF IMMUNOLOGY
Volume 171, Issue 1, Pages 390-397

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.171.1.390

Keywords

-

Categories

Funding

  1. NHLBI NIH HHS [HL36110, HL63284] Funding Source: Medline

Ask authors/readers for more resources

cDNAs were recently isolated from BALB/c mouse mast cells (MCs) that encode the new signaling protein mouse Ras guanine nucleotide releasing protein 4 (mRasGRP4). The present study evaluates the expression pattern and biological activity of mRasGRP4 in a variety of mouse strains. As assessed immunohistochemically and by RNA analysis, mRasGRP4 is not coordinately expressed with any of its family members. Normally, mRasGRP4 is an MC-restricted protein in tissues, and kinetic studies revealed that mRasGRP4 is expressed relatively early in developing MCs. The expression (if mRasGRP4 in the fetus before granulated MCs become abundant supports the conclusion that RasGRP4 participates in MC-specific differentiation pathways. Functional studies conducted with recombinant material revealed that mRasGRP4 is a cation-dependent, diacylglycerol (DAG)regulated, guanine nucleotide exchange factor. Immunoelectron microscopic studies revealed that mRasGRP4 resides in either the cytosol or inner leaflet of the plasma membrane of the MC, implying that DAG controls the intracellular movement of this signaling protein in c-kit-stimulated MCs. The mRasGRP4 gene resides on chromosome 7B1 within a site that is prominently linked to baseline airway reactivity in backcrossed C3H/HeJ and A/J mice. A truncated isoform of mRasGRP4 that lacks its DAG-regulatory domain was isolated from C3H/HeJ mouse MCs. Sequence analysis showed that this isoform is the result of defective splicing of the precursor transcript. MCs play a central role in allergic inflammation. The discovery of a novel isoform of mRasGRP4 in hyporesponsive mice suggests that airway reactivity is influenced by RasGRP4-dependent signaling events in pulmonary MCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available