4.5 Article

PLG microsphere size controls drug release rate through several competing factors

Journal

PHARMACEUTICAL RESEARCH
Volume 20, Issue 7, Pages 1055-1062

Publisher

KLUWER ACADEMIC/PLENUM PUBL
DOI: 10.1023/A:1024466407849

Keywords

controlled release; zero-order release; uniform microspheres; poly(lactide-co-glycolide); piroxicam

Ask authors/readers for more resources

Purpose. Although the rate of drug release from poly(D,L-lactide-co-glycolide) (PLG) microspheres is often modulated by changing fabrication conditions or materials, the specific factors directly controlling the release profiles are often unclear. We have fabricated uniform rhodamine- and piroxicam-containing microspheres, 10 to 100 mum in diameter, to better understand how microsphere size controls drug release. Methods. Drug distribution within the microspheres was examined using confocal fluorescence microscopy. The rate of polymer degradation was determined as the change in molecular weight, measured by gel permeation chromatography, during in vitro degradation experiments. Further, changes in the surface and interior morphology of the particles during in vitro degradation were investigated by scanning electron microscopy. Results. Microsphere size greatly affected drug distribution. Small (similar to10-mum) microspheres showed an essentially uniform drug distribution. Larger (similar to100-mum) microspheres showed redistribution of drug to specific regions of the microspheres. Rhodamine partitioned to the surface and piroxicam partitioned to the interior of large PLG microspheres. Further, the rate of polymer degradation increased with microsphere size, possibly the result of a more acidic interior caused by increased accumulation of hydrolyzed polymer products in larger particles. Finally, larger microspheres developed a more porous interior structure during the drug release. Conclusions. Microsphere size affects drug release not only through changes in diffusion rates but also through secondary effects including drug distribution in the particle, polymer degradation rate, and microsphere erosion rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available