4.5 Article

p53 Represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-κB subunit with histone deacetylase 1

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 23, Issue 13, Pages 4713-4727

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.23.13.4713-4727.2003

Keywords

-

Ask authors/readers for more resources

The p53 and NF-kappaB transcription factor families are important, multifunctional regulators of the cellular response to stress. Here we have investigated the regulatory mechanisms controlling p53-dependent cell cycle arrest and cross talk with NF-kappaB. Upon induction of p53 in H1299 or U-2 OS cells, we observed specific repression of cyclin D1 promoter activity, correlating with a decrease in cyclin D1 protein and mRNA levels. This repression was dependent on the proximal NF-kappaB binding site of the cyclin D1 promoter, which has been shown to bind the p52 NF-kappaB subunit. p53 inhibited the expression of Bcl-3 protein, a member of the IkappaB family that functions as a transcriptional coactivator for p52 NF-kappaB and also reduced p52/Bcl-3 complex levels. Concomitant with this, p53 induced a significant increase in the association of p52 and histone deacetylase 1 (HDAC1). Importantly, p53-mediated suppression of the cyclin D1 promoter was reversed by coexpression of Bcl-3 and inhibition of p52 or deacetylase activity. p53 therefore induces a transcriptional switch in which p52/Bcl-3 activator complexes are replaced by p52/HDAC1 repressor complexes, resulting in active repression of cyclin D1 transcription. These results reveal a unique mechanism by which p53 regulates NF-kappaB function and cell cycle progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available