4.5 Article

Ectonucleotidase in sympathetic nerve endings modulates ATP and norepinephrine exocytosis in myocardial ischemia

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.103.049874

Keywords

-

Funding

  1. NHLBI NIH HHS [HL 34215, HL 47073, HL 46403] Funding Source: Medline
  2. NINDS NIH HHS [NS 41462] Funding Source: Medline

Ask authors/readers for more resources

We recently reported that ATP, coreleased with norepinephrine (NE) from cardiac sympathetic nerves, increases NE exocytosis via a positive feedback mechanism. A neuronal ectonucleotidase (E-NTPDase) metabolizes the released ATP, decreasing NE exocytosis. Excessive NE release in myocardial ischemia exacerbates cardiac dysfunction. Thus, we studied whether the ATP-mediated autocrine amplification of NE release is operative in ischemia and, if so, whether it can be modulated by E-NTPDase and its recombinant equivalent, solCD39. Isolated, guinea pig hearts underwent 10- or 20-min ischemic episodes, wherein NE was released by exocytosis and reversal of the NE transporter, respectively. Furthermore, to restrict the role of E-NTPDase to transmitter ATP, sympathetic nerve endings were isolated (cardiac synaptosomes) and subjected to increasing periods of ischemia. Availability of released ATP at the nerve terminals was either increased via E-NTPDase inhibition or diminished by enhancing ATP hydrolysis with solCD39. P2X receptor blockade with PPADS was used to attenuate the effects of released ATP. We found that, in short-term ischemia (but, as anticipated, not in protracted ischemia, where NE release is carrier-mediated), ATP exocytosis was linearly correlated with that of NE. This indicates that by limiting the availability of ATP at sympathetic terminals, E-NTPDase effectively attenuates NE exocytosis in myocardial ischemia. Our findings suggest a key role for neuronal E-NTPDase in the control of adrenergic function in the ischemic heart. Because excessive NE release is an established cause of dysfunction in ischemic heart disease, solCD39 may offer a novel therapeutic approach to myocardial ischemia and its consequences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available