4.5 Article

Pulmonary vascular dysfunction in preterm lambs with chronic lung disease

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00395.2002

Keywords

neonatal lung injury; bronchopulmonary dysplasia; inhaled nitric oxide; pulmonary circulation; soluble guanylate cyclase; pulmonary vascular resistance; newborn sheep

Funding

  1. NHLBI NIH HHS [HL-56401, HL-62875, HL-62512] Funding Source: Medline

Ask authors/readers for more resources

Chronic lung injury from prolonged mechanical ventilation after premature birth inhibits the normal postnatal decrease in pulmonary vascular resistance (PVR) and leads to structural abnormalities of the lung circulation in newborn sheep. Compared with normal lambs born at term, chronically ventilated preterm lambs have increased pulmonary arterial smooth muscle and elastin, fewer lung microvessels, and reduced abundance of endothelial nitric oxide synthase. These abnormalities may contribute to impaired respiratory gas exchange that often exists in infants with chronic lung disease (CLD). Nitric oxide inhalation (iNO) reduces PVR in human infants and lambs with persistent pulmonary hypertension. We wondered whether iNO might have a similar effect in lambs with CLD. We therefore studied the effect of iNO on PVR in lambs that were delivered prematurely at similar to125 days of gestation ( term = 147 days) and mechanically ventilated for 3 wk. All of the lambs had chronically implanted catheters for measurement of pulmonary vascular pressures and blood flow. During week 2 of mechanical ventilation, iNO at 15 parts/million for 1 h decreased PVR by similar to20% in 12 lambs with evolving CLD. When the same study was repeated in eight lambs at the end of week 3, iNO had no significant effect on PVR. To see whether this loss of iNO effect on PVR might reflect dysfunction of lung vascular smooth muscle, we infused 8-bromo-guanosine 3', 5'-cyclic monophosphate (cGMP; 150 mug . kg(-1) . min(-1) iv) for 15 - 30 min in four of these lambs at the end of week 3. PVR consistently decreased by 30 - 35%. Lung immunohistochemistry and immunoblot analysis of excised pulmonary arteries from lambs with CLD, compared with control term lambs, showed decreased soluble guanylate cyclase (sGC). These results suggest that loss of pulmonary vascular responsiveness to iNO in preterm lambs with CLD results from impaired signaling, possibly related to deficient or defective activation of sGC, the intermediary enzyme through which iNO induces increased vascular smooth muscle cell cGMP and resultant vasodilation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available