4.7 Article

A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization

Journal

CARDIOVASCULAR RESEARCH
Volume 59, Issue 1, Pages 27-36

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0008-6363(03)00342-0

Keywords

K-channel; ion channels; ECG; epidemiology; arrhythmias

Ask authors/readers for more resources

Objective: Genetic variants of cardiac ion channels may influence cardiac repolarization. Thereby such variants may modulate the penetrance of primary electrical disorders, contribute to differences in susceptibility to drug-induced QT-prolongation between individuals, or contribute to rhythm disturbances in the context of structural heart disease. Since the current encoded by KCNH2 (HERG; I-Kr) is a primary determinant of repolarization, we conducted association studies between the respective alleles of the common amino acid-changing polymorphism at codon 897 (2690A>C; K897T) within HERG and rate-corrected QT interval (QTc). Methods and Results: Association analysis in Caucasian subjects (n=1030) revealed a significant association of this polymorphism with QTc (P=0.0025) with CC homozygotes having a significantly shorter QTc (388.5+/-2.9 ms) compared to AA homozygotes (398.5+/-0.9) and heterozygotes (AC, 397.2 +/- 1.2). The latter two genotypes were associated with comparable mean QTc's, suggesting that the 2690C-allele is recessive. After stratification by sex, the polymorphism was more predictive of QTc in females (P=0.0021), a finding that was replicated in a second population sample (n=352) from the same ethnic background (P=0.044). To assess whether this polymorphism could represent a 'functional' polymorphism, we compared the biophysical properties of K897- and T897-HERG channels by whole-cell voltage clamp. Compared to the K897 channel, the T897 channel displayed a shift of -7 mV in voltage dependence of activation and increased rates of current activation and deactivation. Conclusion: As confirmed in modeling studies, these changes are expected to shorten action potential duration by an increase in I-Kr. This recapitulates the shorter QTc in females homozygous for the 2690C-allele. (C) 2003 European Society of Cardiology. Published by Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available