3.8 Article

Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1

Journal

EUROPEAN JOURNAL OF BIOCHEMISTRY
Volume 270, Issue 14, Pages 2921-2928

Publisher

WILEY
DOI: 10.1046/j.1432-1033.2003.03691.x

Keywords

cryptochrome; photolyase; blue light; photoreceptor; autophosphorylation

Ask authors/readers for more resources

Cryptochromes are blue-light photoreceptors sharing sequence similarity to photolyases, a class of flavoenzymes catalyzing repair of UV-damaged DNA via electron transfer mechanisms. Despite significant amino acid sequence similarity in both catalytic and cofactor-binding domains, cryptochromes lack DNA repair functions associated with photolyases, and the molecular mechanism involved in cryptochrome signaling remains obscure. Here, we report a novel ATP binding and autophosphorylation activity associated with Arabidopsis cry1 protein purified from a baculovirus expression system. Autophosphorylation occurs on serine residue(s) and is absent in preparations of cryptochrome depleted in flavin and/or misfolded. Autophosphorylation is stimulated by light in vitro and oxidizing agents that act as flavin antagonists prevent this stimulation. Human cry1 expressed in baculovirus likewise shows ATP binding and autophosphorylation activity, suggesting this novel enzymatic activity may be important to the mechanism of action of both plant and animal cryptochromes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available