4.6 Article

Activation and inhibition of cellular calcium and tyrosine kinase signaling pathways identify targets of the HBx protein involved in hepatitis B virus replication

Journal

JOURNAL OF VIROLOGY
Volume 77, Issue 14, Pages 7713-7719

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JVI.77.14.7713-7719.2003

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA 56533, R01 CA056533, F32 CA 4476] Funding Source: Medline
  2. NIAID NIH HHS [T32 AI007180, T32 AI 07180] Funding Source: Medline

Ask authors/readers for more resources

Human hepatitis B virus (HBV) HBx protein is a multifunctional protein that activates cellular signaling pathways and is thought to be essential for viral infection. Woodchuck HBV mutants that lack HBx are unable to replicate in vivo or are severely impaired. HBV replication in HepG2 cells, a human hepatoblastoma cell line, is stimulated 5- to 10-fold by HBx protein. We have utilized the HepG2, HBx-dependent HBV replication system to study the effects of activators and inhibitors of cytosolic calcium and tyrosine kinase signaling pathways on viral replication. By transfecting either a wild-type HBV genome or an HBV genome that does not express HBx and then treating transfected cells with activators or inhibitors of signaling pathways, we identified compounds that either impair wild-type HBV replication or rescue HBx-deficient HBV replication. Geldanamycin or herbimycin A, tyrosine kinase inhibitors, blocked HBV replication. Derivatives of cyclosporine, i.e., cyclosporine A, cyclosporine H, and SDZ NIM811, which block cytosolic calcium signaling and specifically the mitochondrial permeability transition pore (SDZ NIM811), also impaired HBV replication. Treatment of cells with compounds that increase cytosolic calcium levels by a variety of mechanisms rescued replication of an HBx-deficient HBV mutant. Transcription of viral RNA and production of viral capsids were only minimally affected by these treatments. These results define a functional signaling circuit for HBV replication that includes calcium signaling and activation of cytosolic signaling pathways involving Src kinases, and they suggest that these pathways are stimulated by HBx acting on the mitochondrial transition pore.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available