4.8 Article

X-ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates

Journal

NATURE MATERIALS
Volume 2, Issue 7, Pages 487-492

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nmat916

Keywords

-

Ask authors/readers for more resources

The crystallographic texture of thin-film coatings plays an essential role in determining such diverse materials properties as wear resistance, recording density in magnetic media and electrical transport in superconductors. Typically, X-ray pole figures provide a macroscopically averaged description of texture, and electron backscattering provides spatially resolved surface measurements. In this study, we have used focused, polychromatic synchrotron X-ray microbeams to penetrate multilayer materials and simultaneously characterize the local structure, orientation and strain tensor of different heteroepitaxial layers with submicrometre resolution. Grain-by-grain microstructural studies of cerium oxide films grown on textured nickel foils reveal two distinct kinetic growth regimes on vicinal surfaces: ledge growth at elevated temperatures and island growth at lower temperatures. In addition, a combinatorial approach reveals that crystallographic tilting associated with these complex interfaces is qualitatively described by a simple geometrical model applicable to brittle films on ductile substrates. The sensitivity of conducting percolation paths to tilt-induced texture improvement is demonstrated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available