4.6 Article

Surface coat remodeling during differentiation of Trypanosoma brucei

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 27, Pages 24665-24672

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M301497200

Keywords

-

Funding

  1. NIAID NIH HHS [T32 AI007414, AI35739, AI07414, R01 AI035739] Funding Source: Medline

Ask authors/readers for more resources

African trypanosomes (Trypanosoma brucei) are digenetic parasites whose lifecycle alternates between the mammalian bloodstream and the midgut of the tsetse fly vector. In mammals, proliferating long slender parasites transform into non-diving short stumpy forms, which differentiate into procyclic forms when ingested by the tsetse fly. A hallmark of differentiation is the replacement of the bloodstream stage surface coat composed of variant surface glycoprotein (VSG) with a new coat composed of procylin. An undefined endoprotease and endogenous glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) have been implicated in releasing the old VSG coat. However, GPI hydrolysis has been considered unimportant because (i) GPI-PLC null mutants are fully viable and (ii) cytosolic GPI-PLC is localized away from cell surface VSG. Utilizing an in vitro differentiation assay with pleomorphic strains we have investigated these modes of VSG release. Shedding is initially by GPI hydrolysis, which ultimately accounts for a substantial portion of total release. Surface biotinylation assays indicate that GPI-PLC does gain access to extracellular VSG, suggesting that this mode is primed in the starting short stumpy population. Proteolytic release is up-regulated during differentiation and is stereoselectively inhibited by peptidomimetic collagenase inhibitors, implicating a zinc metalloprotease. This protease may be related to TbMSP-B, a trypanosomal homologue of Leishmania major surface protease (MSP) described in the accompanying paper (LaCount, D. J., Gruszynski, A. E., Grandgenett, P. M., Bangs, J. D., and Donelson, J. E. (2003) J. Biol. Chem. 278, 24658-24664). Overall, our results demonstrate that surface coat remodeling during differentiation has multiple mechanisms and that GPI-PLC plays a more significant role in VSG release than previously thought.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available