4.8 Article

CDKN2A point mutations D153spl(c.457G > T) and IVS2+1G > T result in aberrant splice products affecting both p16INK4a and p14ARF

Journal

ONCOGENE
Volume 22, Issue 28, Pages 4444-4448

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1206564

Keywords

melanoma; RT-PCR; alternate reading frame; cryptic splice site

Ask authors/readers for more resources

The CDKN2A gene, which encodes the proteins p16(INK4a) and p14(ARF), is located on chromosome 9p21. Germline mutations at this locus increase susceptibility to cutaneous malignant melanoma (CMM). In general, missense and nonsense mutations are primarily responsible for defective p16(INK4a) and possibly p14(ARF) protein function and account for similar to20% of inherited CMM cases. We report a G>T transversion mutation in the last nucleotide of exon 2, affecting the aspartic acid residue at position 153 of CDKN2A-p16(INK4a) in a proband with melanoma. If splicing were unaffected, this mutation would change Asp to Tyr. RT-PCR analysis, however, revealed that this mutation, which we have termed D153spl(c.457G>T), and a previously described mutation at the next nucleotide, IVS2 + 1G > T, result in identical aberrant splicing affecting both p16(INK4a) and p14(ARF). The two main alternate splice products for each of the two normal transcripts includes a 74 bp deletion in exon 2, revealing a cryptic splice site, and the complete skipping of exon 2. The dual inactivation of p16(INK4a), and p14(ARF) may contribute to the CMM in these families.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available