4.8 Article

NIK is a component of the EGF/heregulin receptor signaling complexes

Journal

ONCOGENE
Volume 22, Issue 28, Pages 4348-4355

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1206532

Keywords

NIK; EGF; Grb7; NF-kappa B; signaling

Funding

  1. NIAID NIH HHS [R01 AI49992-01] Funding Source: Medline

Ask authors/readers for more resources

Nuclear factor kappaB-inducing kinase (NIK) is a member of the MAP kinase kinase kinase family that was first identified as a component of the TNF-R1-induced NF-kappaB activation pathway (TNF, tumor necrosis factor; nuclear factor kappaB, NF-kappaB). Gene knockout study, however, suggests that NIK is dispensable for TNF-R1- but required for lymphotoxin-beta receptor-induced NF-kappaB activation. A NIK kinase inactive mutant is a potent inhibitor of NF-kappaB activation triggered by various stimuli, suggesting that NIK is involved in a broad range of NF-kappaB activation pathways. To unambiguously identify signaling pathways that NIK participates in, we screened antibody arrays for proteins that are associated with NIK. This effort identified ErbB4, one of the EGF/heregulin receptors, and Grb7, an adapter protein associated with ErbB4 (ErbB, epidermal growth factor receptor family protein; EGF, epidermal growth factor; Grb, growth factor receptor bound). Coimmunoprecipitation experiments demonstrated that NIK interacted with Grb7, as well as Grb10 and Grb14, but not Grb2. Domain mapping experiments indicated that the central GM domain of Grb7 was sufficient for its interaction with NIK. Coimmunoprecipitation experiments also indicated that Grb7 and NIK could be simultaneously recruited into signaling complexes of all known EGF/heregulin receptors, including EGFR, ErbB2, ErbB3, and ErbB4. In reporter gene assays, NIK could potentiate Grb7, ErbB2/ErbB4, and EGF-induced NF-kappaB activation. A NIK kinase inactive mutant could block ErbB2/ErbB4 and EGF-induced NF-kappaB activation. Moreover, EGF/heregulin receptors activated NF-kappaB in wild-type, but not NIK-/- embryonic fibroblasts. Our findings suggest that NIK is a component of the EGF/heregulin receptor signaling complexes and involved in NF-kappaB activation triggered by these receptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available