4.8 Article

Monolayer ice

Journal

PHYSICAL REVIEW LETTERS
Volume 91, Issue 2, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.91.025502

Keywords

-

Ask authors/readers for more resources

We report results from molecular dynamics simulations of water under confinement and at ambient conditions that predict a first-order freezing transition from a monolayer of liquid water to a monolayer of ice induced by increasing the distance between the confining parallel plates. Since a slab geometry is incompatible with a tetrahedral arrangement of the sp(3) hybridized oxygen of water, the freezing is coupled to a linear buckling transition. By exploiting the ordered out-of-plane displacement of the molecules in the buckled phase the distortion of the hydrogen bonds is minimized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available