4.6 Article

A calmodulin/inositol 1,4,5-trisphosphate (IP3) receptor-binding region targets TRPC3 to the plasma membrane in a calmodulin/IP3 receptor-independent process

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 278, Issue 28, Pages 25758-25765

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M303890200

Keywords

-

Ask authors/readers for more resources

Conformational coupling with the inositol 1,4,5-trisphosphate (IP3) receptor has been suggested as a possible mechanism of activation of TRPC3 channels and a region in the C terminus of TRPC3 has been shown to interact with the IP3 receptor as well as calmodulin (calmodulin/IP3 receptor-binding (CIRB) region). Here we show that internal deletion of 20 amino acids corresponding to the highly conserved CIRB region results in the loss of diacylglycerol and agonist-mediated channel activation in HEK293 cells. By using confocal microscopy to examine the cellular localization of Topaz fluorescent protein fusion constructs, we demonstrate that this loss in activity is caused by faulty targeting of CIRB-deleted mutants to intracellular compartments. Wild type TRPC3 and mutants lacking a C-terminal predicted coiled coil region downstream of CIRB were targeted to the plasma membrane correctly in HEK293 cells and exhibited TRPC3-mediated calcium entry in response to agonist activation. Mutation of conserved YQ and MKR motifs to alanine within the CIRB region in TRPC3-Topaz, which would be expected to interfere with IP3 receptor and/or calmodulin binding, had no effect on channel function or targeting. Additionally, TRPC3 targets to the plasma membrane of DT40 cells lacking all three IP3 receptors and forms functional ion channels. These findings indicate that the previously identified CIRB region of TRPC3 is involved in its targeting to the plasma membrane by a mechanism that does not involve interaction with IP3 receptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available