4.6 Article

Involvement of the extracellular signal regulated kinase pathway in hydrocarbon-induced reactive oxygen species formation in human neutrophil granulocytes

Journal

TOXICOLOGY AND APPLIED PHARMACOLOGY
Volume 190, Issue 2, Pages 102-110

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S0041-008X(03)00158-3

Keywords

organic solvents; neutrophils; oxidative stress; reactive oxygen species; MAPK pathway; ERK1/2

Ask authors/readers for more resources

In the present study we have examined the effects of hydrocarbons on the formation of reactive oxygen species (ROS) in human neutrophil granulocytes in vitro. We found that hydrocarbons induce ROS formation in a concentration-dependent manner and that the ROS-inducing potency increases with increasing number of carbon atoms in the structure. In general, aromatic hydrocarbons were less potent inducers of ROS than aliphatic and cyclic hydrocarbons. The most potent compound in each group, t-butylcyclohexane, n-decane, and n-butylbenzene, were chosen for mechanistic studies. ROS formation was inhibited by the MEK1/2 inhibitor U0126, the tyrosine kinase inhibitor erbstatin-A, and the phosphatidylinositol-3 kinase inhibitor wortmannin. The involvement of the ERK1/2 pathway was confirmed by Western blot analysis of phosphorylated ERK1/2. The study revealed only small differences in the mechanisms involved for the three compounds. The responses were not affected by Pertussis toxin, indicating that G(i)-protein coupled receptors are not involved in neutrophil activation after hydrocarbon exposure. Based on these findings we propose a mechanism involving tyrosine kinases, PI3 kinase, and the ERK1/2 pathway, leading to activation of the NADPH oxidase and production of ROS in neutrophils stimulated by organic solvents. (C) 2003 Elsevier Science (USA). All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available