4.7 Article

Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation

Journal

BLOOD
Volume 102, Issue 2, Pages 517-520

Publisher

AMER SOC HEMATOLOGY
DOI: 10.1182/blood-2002-07-2334

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA 42551] Funding Source: Medline
  2. NIDDK NIH HHS [DK 53074] Funding Source: Medline

Ask authors/readers for more resources

Telomere shortening ultimately limits the replicative life span of cultured human somatic cells. Telomeres also shorten during replicative aging in vivo in hematopoietic cells, including early hematopoietic progenitors and hematopoietic stem cells (HSCs), from humans and mice, despite readily detectable levels of telomerase in these cells. To assess the relevance of telomerase to the long-term replicative capacity of HSCs in vivo, we serially transplanted HSCs from wild-type and telomerase-deficient mice until exhaustion and monitored telomere length in HSCs during this process. Telomerase-deficient HSCs could be serially transplanted for only 2 rounds, whereas wild-type HSCs could be serially transplanted for at least 4 rounds. Furthermore, the rate of telomere shortening was increased approximately 2-fold during serial transplantation of telomerase-deficient HSCs. These findings suggest that one role for telomerase in the HSC is to partially counter the rate of telomere shortening during division of HSCs, thereby preventing premature loss of telomere function and providing added replicative capacity. (C) 2003 by The American Society of Hematology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available