4.8 Article

Imaging of Zn2+ release from pancreatic β-cells at the level of single exocytotic events

Journal

ANALYTICAL CHEMISTRY
Volume 75, Issue 14, Pages 3468-3475

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ac0341057

Keywords

-

Funding

  1. NIDDK NIH HHS [DK 46960] Funding Source: Medline

Ask authors/readers for more resources

Regulated secretion of Zn2+ from isolated pancreatic beta-cells was imaged using laser-scanning confocal microscopy. In the method, beta-cells were incubated in a solution containing the novel fluorescent Zn2+ indicator FluoZin-3. Zn2+ released from the cells reacted with the dye to form a fluorescent product, which was detected by the confocal microscope. The new dye is much brighter than Zinquin, previously used for this application, allowing detection limits of 10-40 nM and temporal resolution of 16 ms/image. The high temporal resolution allowed imaging of isolated fluorescent transients that occurred at the edge of the cells following stimulation with 20 mM glucose or 40 mM K+. Fluorescent transients took 1650 ms to reach a peak from the initial rise and returned to baseline after 170 +/- 50 ms (n = 78 transients from 15 cells). It was concluded that the transients correspond to detection of exocytotic release of Zn2+. Analysis of the temporal and spatial dispersion of the transients indicates that the release of Zn2+ is not diffusion limited but is instead kinetically controlled in agreement with previous observations of insulin release detected by amperometry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available