4.6 Article

Transport of interacting electrons through a double barrier in quantum wires

Journal

PHYSICAL REVIEW B
Volume 68, Issue 3, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.035421

Keywords

-

Ask authors/readers for more resources

We generalize the fermionic renormalization group method to analytically describe transport through a double barrier structure in a one-dimensional system. Focusing on the case of weakly interacting electrons, we investigate thoroughly the dependence of the conductance on the strength and the shape of the double barrier for arbitrary temperature T. Our approach allows us to systematically analyze the contributions to renormalized scattering amplitudes from different characteristic scales absent in the case of a single impurity, without restricting the consideration to the model of a single resonant level. Both a sequential resonant tunneling for high T and a resonant transmission for T smaller than the resonance width are studied within the unified treatment of transport through strong barriers. For weak barriers, we show that two different regimes are possible. Moderately weak impurities may get strong due to a renormalization by interacting electrons, so that transport is described in terms of theory for initially strong barriers. The renormalization of very weak impurities does not yield any peak in the transmission probability; however, remarkably, the interaction gives rise to a sharp peak in the conductance, provided the asymmetry is not too high.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available