4.8 Article

Dispersion energy from density-functional theory description of monomers

Journal

PHYSICAL REVIEW LETTERS
Volume 91, Issue 3, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.91.033201

Keywords

-

Ask authors/readers for more resources

A method is proposed for calculations of dispersion energy at finite intermonomer separations. It uses a generalized Casimir-Polder formula evaluated with dynamic density susceptibilities provided by time-dependent density-functional theory. The method recovers the dispersion energies of He, Ne, and H2O dimers to within 3% or better. Since the computational effort of the new algorithm scales approximately as the third power of system size, the method is much more efficient than standard wave-function methods capable of predicting the dispersion energy at a similarly high level of accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available