4.7 Article

Follow-up Hubble Space Telescope Space Telescope Imaging Spectroscopy of three candidate tidal disruption events

Journal

ASTROPHYSICAL JOURNAL
Volume 592, Issue 1, Pages 42-51

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/375553

Keywords

galaxies : individual (NGC 5905, RX J1242.6-1119, RX J1624.9+7554); galaxies : nuclei; galaxies : Seyfert; X-rays : galaxies

Ask authors/readers for more resources

Large-amplitude, high-luminosity, soft X-ray flares were detected by the ROSAT All-Sky Survey in several galaxies with no evidence for Seyfert activity in their ground-based optical spectra. These flares had the properties predicted for a tidal disruption event by a central supermassive black hole: soft X-ray spectrum, timescale of months, and large X-ray luminosity (10(42)-10(44) ergs s(-1)). In order to evaluate the alternative hypothesis that these flares could have been some form of extreme active galactic nucleus variability, we obtained follow-up optical spectroscopy of three of the flaring galaxies a decade later with the Space Telescope Imaging Spectrograph and a narrow slit to search for or place stringent limits on the presence of any persistent Seyfert-like emission in their nuclei. Two of the galaxies, RX J1624.9+7554 and RX J1242.6-1119, show neither evidence for emission lines nor a nonstellar continuum in their Hubble Space Telescope nuclear spectra, consistent with their ground-based classification as inactive galaxies. They remain the most convincing as hosts of tidal disruption events. NGC 5905, previously known as a starburst H II galaxy due to its strong emission lines, has in its inner 0.1 a nucleus with narrow emission line ratios requiring a Seyfert 2 classification. This weak Seyfert 2 nucleus in NGC 5905, which was masked by the many surrounding H II regions in ground-based spectra, requires a low level of prior nonstellar photoionization, thus raising some uncertainty about the nature of its X-ray. are, which may or may not have been a tidal disruption event. The absence of both broad emission lines and nuclear X-ray absorption in NGC 5905 also characterizes it as a true Seyfert 2 galaxy, yet one that has varied by more than a factor of 100 in X-rays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available