4.8 Article

Synthesis, electronic structure, and electron transfer dynamics of (aryl)ethynyl-bridged donor-acceptor systems

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 125, Issue 29, Pages 8769-8778

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja021278p

Keywords

-

Ask authors/readers for more resources

The ET dynamics of a series of donor-spacer-acceptor (D-Sp-A) systems featuring (porphinato)zinc(II), (aryl)ethynyl bridge, and arene diimide units were investigated by pump-probe transient absorption spectroscopy. Analysis of these data within the context of the Marcus-Levich-Jortner equation suggests that the pi-conjugated (aryl)ethynyl bridge plays an active role in the charge recombination (CR) reactions of these species by augmenting the extent of (porphinato)zinc(II) cation radical electronic delocalization; this increase in cation radical size decreases the reorganization energy associated with the CR reaction and thereby attenuates the extent to which the magnitudes of the CR rate constants are solvent dependent. The symmetries of porphyrin-localized HOMO and HOMO-1, the energy gap between these two orbitals, and D-A distance appear to play key roles in determining whether the (aryl)ethynyl bridge simply mediates electronic superexchange or functions as an integral component of the D and A units.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available