4.6 Article

Biochemical processing of E-cadherin under cellular stress

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S0006-291X(03)01143-4

Keywords

caspase; MDCK cells; antimycin; deoxyglucose; cellular stress; ischemia; adherens junction; E-cadherin; protein degradation; apoptosis

Funding

  1. NCRR NIH HHS [RR04050] Funding Source: Medline

Ask authors/readers for more resources

The proteolytic cleavage pathways of E-cadherin endogenously expressed in MDCK (Madin-Darby canine kidney) cells were characterized in cells treated with antimycin A and deoxyglucose to examine transmembrane protein processing under cellular stress. E-cadherin is a type I transmembrane protein which operates as the cell adhesion molecule component of the adherens junction, a complex of proteins involved in epithelial tissue development and integrity. We now demonstrate that treatment of MDCK cells with antimycin A and deoxyglucose activates caspase mediated pathways that cleave E-cadherin. E-cadherin is cleaved into two major fragments. with the sizes predicted by the location of a caspase-3 cleavage consensus sequence. Cleavage of E-cadherin and deposition of the C-terminal fragment into the cytoplasm are inhibited by the caspase inhibitor DEVD-CHO. Thus, a major mechanism for E-cadherin cleavage and dissolution of the adherens junction under antimycin/deoxyglucose treatment is caspase mediated, initiated by activation of an apoptosis pathway. (C) 2003 Elsevier Science (USA). All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available