4.7 Article

A molecular dynamics simulation of droplet evaporation

Journal

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Volume 46, Issue 17, Pages 3179-3188

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0017-9310(03)00101-7

Keywords

-

Ask authors/readers for more resources

A molecular dynamics (MD) simulation method is developed to study the evaporation of submicron droplets in a gaseous surrounding. A new methodology is proposed to specify initial conditions for the droplet and the ambient fluid, and to identify droplet shape during the vaporization process. The vaporization of xenon droplets in nitrogen ambient under subcritical and supercritical conditions is examined. Both spherical and non-spherical droplets are considered. The MD simulations are shown to be independent of the droplet and system sizes considered, although the observed vaporization behavior exhibits some scatter, as expected. The MD results are used to examine the effects of ambient and droplet properties on the vaporization characteristics of submicron droplets. For subcritical conditions, it is shown that a spherical droplet maintains its sphericity, while an initially non-spherical droplet attains the spherical shape very early in its lifetime, i.e., within 10% of the lifetime. For both spherical and non-spherical droplets, the subcritical vaporization, which is characterized by the migration of xenon particles that constitute the droplet to the ambient, exhibits characteristics that are analogous to those reported for continuum-size droplets. The vaporization process consists of an initial liquid-heating stage during which the vaporization rate is relatively low, followed by nearly constant liquid-temperature evaporation at a pseudo wet-bulb temperature. The rate of vaporization increases as the ambient temperature and/or the initial droplet temperature are increased. For the supercritical case, the droplet does not return to the spherical configuration, i.e., its sphericity deteriorates sharply, and its temperature increases continuously during the vaporization process. (C) 2003 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available