4.5 Article

How Daphnia copes with excess carbon in its food

Journal

OECOLOGIA
Volume 136, Issue 3, Pages 336-346

Publisher

SPRINGER-VERLAG
DOI: 10.1007/s00442-003-1283-7

Keywords

assimilation; carbon : phosphorus ratios; dissolved organic carbon excretion; homeostasis; respiration

Categories

Ask authors/readers for more resources

Animals that maintain near homeostatic elemental ratios may get rid of excess ingested elements from their food in different ways. C regulation was studied in juveniles of Daphnia magna feeding on two Selenastrum capricornutum cultures contrasting in P content (400 and 80 C:P atomic ratios). Both cultures were labelled with C-14 in order to measure Daphnia ingestion and assimilation rates. No significant difference in ingestion rates was observed between P-low and P-rich food, whereas the net assimilation of C-14 was higher in the treatment with P-rich algae. Some Daphnia were also homogeneously labelled over 5 days on radioactive algae to estimate respiration rates and excretion rates of dissolved organic C (DOC). The respiration rate for Daphnia fed with high C:P algae (38.7% of body C day(-1)) was significantly higher than for those feeding on low C:P algae (25.3% of body C day(-1)). The DOC excretion rate was also higher when animals were fed on P-low algae (13.4% of body C day(-1)) than on P-rich algae (5.7% of body C day(-1)) . When corrected for respiratory losses, total assimilation of C did not differ significantly between treatments (around 60% of body C day(-1)). Judging from these experiments, D. magna can maintain its stoichiometric balance when feeding on unbalanced diets (high C:P) primarily by disposing of excess dietary C via respiration and excretion of DOC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available