4.4 Article

Fractional charge definitions and conditions

Journal

JOURNAL OF MATHEMATICAL PHYSICS
Volume 44, Issue 8, Pages 3607-3618

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1586793

Keywords

-

Ask authors/readers for more resources

The phenomenon of fractional charge has come to prominence in recent decades through theoretical and experimental discoveries of isolable objects which carry fractions of familiar charge units-electric charge Q, spin S, baryon number B and lepton number L. It is shown here on the basis of a few simple assumptions that all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which many-body correlations can produce familiar adiabatic, continuous renormalization, and in some circumstances nonadiabatic, discrete renormalization. The fractional charges may be carried either by fundamental particles or by fundamental solitons. This excludes nontopological solitons and also skyrmions: The only known fundamental solitons in three or fewer space dimensions d are the kink (d=1), the vortex (d=2), and the magnetic monopole (d=3). Further, for a charge which is not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional local values of B-L for electrically charged elementary particles. (C) 2003 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available