4.5 Article

Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 86, Issue 4, Pages 860-868

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1471-4159.2003.01918.x

Keywords

antioxidants; hippocampus; neurotoxicity; peroxiredoxin-3; reactive oxygen species

Ask authors/readers for more resources

Mitochondria are involved in excitotoxic damage of nerve cells. Following the breakdown of the calcium-buffering ability of mitochondria, mitochondrial calcium overload induces reactive oxygen species (ROS) bursts that produce free radicals and open permeability transition pores, ultimately leading to neuronal cell death. In the present study, we focused on a mitochondrial antioxidant protein, peroxiredoxin-3 (Prx-3), to investigate the mechanism by which toxic properties of ROS were up-regulated in mitochondria of damaged nerve cells. Immunohistochemical analysis revealed that Prx-3 protein exists in mitochondria of rat hippocampus, whereas we found a significant decrease in Prx-3 mRNA and protein levels associated with an increase in nitrated proteins in the rat hippocampus injured by microinjection of ibotenic acid. Furthermore, in vivo adenoviral gene transfer of Prx-3 completely inhibited protein nitration and markedly reduced gliosis, a post-neuronal cell death event. Since mitochondrial Prx-3 seems to be neuroprotective against oxidative insults, our findings suggest that Prx-3 up-regulation might be a useful novel approach for the management of neurodegenerative diseases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available